Borda vs. Condorcet

- Jean-Charles Chevalier de Borda (1733 – 1799)
 - Mathematiker, Physiker und Seefahrer
 - War an der Konstruktion des "Ur-Meters" beteiligt (1/10.000.000 des Abstands zwischen Nordpol und Äquator)
- Marie Jean Antoine Nicolas Caritat,
 Marquis de Condorcet (1743 1794)
 - Philosoph und Mathematiker
 - Früher Verfechter des Frauenwahlrechts und Gegner der Todesstrafe

Bordas Vorschlag

- Wir nehmen im folgenden an, dass alle individuellen Präferenzen strikt sind.
- m ist die Anzahl der Alternativen, n die Anzahl der Wähler.

Familie der Punkteverfahren

- ▶ Def.: Eine SCC ist ein Punkteverfahren wenn es einen Vektor $s=(s_1, ..., s_m)$ mit $s_1 \ge ... \ge s_m$ und $s_1 > s_m$ gibt, so dass immer die Alternativen mit den meisten aufsummierten Punkten gewinnen wenn jeder Wähler seiner Alternative an der i. Position s_i Punkte gibt.
- Beispiele
 - Borda: s=(m-1, m-2, ..., 0)
 - Die Punktzahl, die ein Wähler einer Alternative gibt, entspricht der Anzahl der Alternativen die er niedriger einstuft.
 - Borda schlug dieses Verfahren 1770 der französischen Akademie der Wissenschaften vor, die es daraufhin 20 Jahre verwendete bis Napoleon Bonaparte es abschaffte.
 - Mehrheitswahl ("plurality"): s=(1, 0, ..., 0)
 - "anti-plurality": s=(1, ..., 1, 0)

Condorcets Vorschlag

- Familie der Condorcet-Verfahren
 - Def.: Eine Alternative a ist ein Condorcet-Gewinner, wenn sich für jede andere Alternative b eine Mehrheit finden lässt, die a gegenüber b bevorzugt.
 - ▶ Def.: Eine SCC f erfüllt die Condorcet-Bedingung oder ist Condorcetkonsistent, wenn f(.)={a} falls a ein Condorcet-Gewinner ist.
 - Beispiel
 - Minimax-Verfahren: Das Minimax Verfahren wählt diejenigen Alternativen aus, für die das schlechteste Ergebnis eines paarweisen Vergleichs am besten ausfällt.

$$f(\succ_1, \dots, \succ_n) = \arg\max_{a \in A} \min_{b \in A} |\{i \in N \mid a \succ_i b\}|$$

4	2	I
Α	В	В
В	С	Α
C	Α	С

→ Vergleichsmatrix und Dominanzgraph an der Tafel

Punkte- und Condorcet-Verfahren

- Bei nur zwei Alternativen und ungerade vielen Wählern ist Mehrheitswahl das einzige Punkteverfahren und das einzige Condorcet-Verfahren.
- Proposition (Condorcet, 1785): Das Borda-Verfahren erfüllt nicht die Condorcet-Eigenschaft.
- Satz (Fishburn, 1973): Kein Punkteverfahren erfüllt die Condorcet-Eigenschaft.
 - Beweis: Tafel.

	6	3	4	4
Sı	Α	O	В	В
S 2	В	Α	Α	С
S 3	С	В	С	Α

Eigenschaften des Borda-Verfahrens

- Borda nimmt eine besondere Rolle unter den Punkteverfahren ein.
 - Satz (Smith, 1973): Ein Condorcet-Gewinner ist niemals die Alternative mit den wenigsten Punkten im Borda-Verfahren. Für jedes andere Punkteverfahren auf mehr als zwei Alternativen gilt diese Aussage nicht!
 - Satz (Gehrlein et al., 1978): Von allen Punkteverfahren maximiert das Borda-Verfahren die Wahrscheinlichkeit, dass ein Condorcet-Gewinner ausgewählt wird, falls ein solcher existiert.
 - Es existieren mehrere elegante axiomatische Charakterisierungen des Borda-Verfahrens.
- Gibt es ein Verfahren, das die Vorzüge von Condorcet und Borda vereint?

Konsistenz

• Def.: Eine SCC f ist konsistent, wenn für zwei disjunkte Mengen von Wählern $N_1,N_2\subset N$ gilt:

$$f(N_1)\cap f(N_2) \neq \emptyset \Longrightarrow f(N_1 \uplus N_2) = f(N_1)\cap f(N_2)$$
 wobei $f(S) = f((\succsim_i)_{i\in S})$ für $S\subseteq N$.

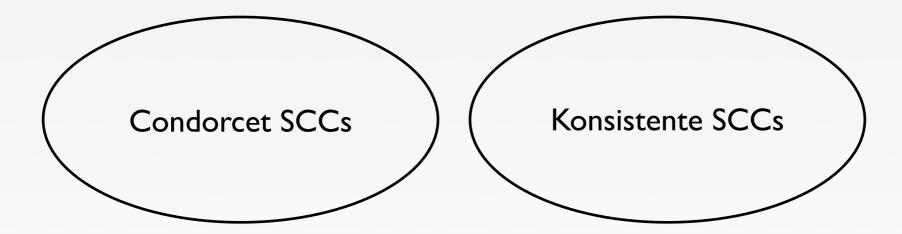
- Wenn zwei verschiedene Gruppen von Wählern einen Konsens erreichen, sollte dieser Konsens auch für die Allgemeinheit gelten.
- Satz (Young et al., 1978): Keine Condorcet-konsistente
 SCC auf mehr als zwei Alternativen ist konsistent.
 - Beweis: Tafel.

Charakterisierung von Punkteverfahren

- Def.: Eine SCC f ist kontinuierlich, wenn es für alle N₁ und N₂ mit f(N₁)={a} und f(N₂)={b}, ein k gibt, so dass f(kN₁UN₂)={a}.
 - Eine verschwindend kleine Gruppe von Wählern soll keinen Einfluss auf das Wahlergebnis haben.
- Satz (Young, 1975): Eine SCC ist genau dann ein Punkteverfahren wenn sie neutral, anonym, konsistent und kontinuierlich ist.
 - Beweis:
 - "von links nach rechts": trivial.
 - "von rechts nach links": schwer.
 - Vgl. axiomatische Charakterisierung der Mehrheitswahl (Satz von May)

SCC Dichotomie

- 200 Jahre nach Borda und Condorcet stellte sich heraus, dass die Grundprinzipien von Borda und Condorcet für SCCs unvereinbar sind!
- Für mehr als zwei Alternativen gilt:



 Ausblick: Für SWFs befindet sich in der Schnittmenge genau ein Verfahren!

Maximum-Likelihood Methode

- Probabilistisches Modell
 - Es existiert eine "korrekte" soziale Präferenzrelation.
 - Jeder Wähler entscheidet sich mit derselben Wahrscheinlichkeit 0,5<p<I für einen "korrekten" paarweisen Vergleich.</p>
 - ▶ Beispiel: Jury, die über schuldig oder nicht schuldig entscheiden muss.
- Satz (Shapley et al., 1984): Von allen SCCs auf zwei Alternativen liefert Mehrheitswahl mit der größten Wahrscheinlichkeit das "korrekte" Ergebnis.
- Satz (Young, 1988): Die Maximum-Likelihood SCCs auf mehr als zwei Alternativen sind
 - ▶ $p \rightarrow 1$: Minimax-Verfahren, und
 - ▶ $p \rightarrow 0,5$: Borda-Verfahren.

Algorithmische Aspekte

- Punkteverfahren können einfach berechnet werden.
 - Komplexität ist polynomiell in m und n.
- Condorcet-Verfahren sind eine Familie von Verfahren mit weniger Struktur und können sowohl einfach als auch schwer zu berechnen sein.
 - Für den Rest der Vorlesung werden wir uns ausschließlich mit Condorcet-Verfahren beschäftigen.

